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Synchronizing chaos in an experimental chaotic pendulum using methods
from linear control theory

Sander Kaart, Jaap C. Schouten,* and Cor M. van den Bleek
Department of Chemical Process Technology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlan

~Received 16 September 1998!

Linear feedback control, specifically model predictive control~MPC!, was used successfully to synchronize
an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the
controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory
and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is
thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate
model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it
is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast
with other chaos control procedures like the map-based Ott, Grebogi, and York method@Phys. Rev. Lett.64,
1196 ~1990!#, the continuous type feedback control proposed by Pyragas@Phys. Lett. A170, 421 ~1992!#, or
the feedback control method recently proposed by Brown and Rulkov@Chaos7 ~3!, 395~1997!#, the procedure
outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance,
i.e., minimum fluctuations around the desired trajectory using minimum control actions.
@S1063-651X~99!09505-7#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Chaos control is a vast expanding field of research w
many applications in, e.g., secure communications@1,2#,
electronics@3,4#, mechanical engineering@5–9#, and fluidi-
zation engineering@10–12#. Many chaos control method
have been proposed in the past decade, see e.g., Che
Dong @13#, Rulkov @3#, Shinbrot@14#, and Kapitaniak@15#
for reviews on the subject. A number of these control me
ods can be used only in specific cases like, e.g., contro
the construction of Lyapunov functions, or are sensitive
noise, like the OGY method@16#.

In this paper, ageneralcontrol method for chaotic sys
tems is proposed, based onlinear control theory@17,18#. The
practical implementation of this linear control method w
be illustrated by the control of an experimental driv
damped chaotic pendulum. To apply linear control meth
to a nonlinear system, it is linearized along some nomi
trajectory, as is usual practice in classic linear control the
@18#. Here the system is linearized along the desired unst
periodic orbit ~UPO! or aperiodic orbit~AO!, in a similar
way as has been recently proposed by Brown and Rul
@19#.

The control methods described in this paper are all ba
on full state feedback control@17#, for which the full state of
the pendulum has to be known~i.e., angular displacemen
angular velocity, and drive phase!. However, the pendulum
used here only allows its angular displacement to be m
sured@8,9#. For that reason the full state of the pendulu
will be estimated by using an observer. An observer i
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model that is synchronized with the experimental syste
After synchronization, the observer’s state will be the sa
as the experimental system’s state. The full state feedb
procedure is sketched in Fig. 1.

When using~full state! feedback control, a choice for th
feedback gain matrixK has to be made. In this paper tw
methods are used for choosingK and each method is imple
mented in two different ways. The first method stabilizes
unstable poles of the system by choosing appropriate fe
back gains and will be referred to as thepole-placement

g,

FIG. 1. ~a! Full state feedback control scheme. The differen
between the reference stater (t) and the dynamical system’s sta
x(t) is used to compute the control inputu by multiplying this
difference with the feedback gain matrixK . ~b! If the full state of
the dynamical system cannot be measured, it can be estimated
an observer. An observer is a model that is synchronized with
experimental system, using the difference between the meas
state variablesCx(t) and simulated state variablesCxobs(t). HereC
is the observation matrix that isolates the measured state var
from the full state. For the experimental pendulum only the angu
displacement of the pendulum can be measured, soCx(t)5u(t).
The observer gain matrixKobs is used to synchronize the observ
with the experimental system.
5303 ©1999 The American Physical Society
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method in the remainder of this paper. This technique
further described in Sec. II A 1.

Usually it is not straightforward to choose feedback ga
in such a way that both the deviations from the target tra
tory and the control actions become sufficiently small. T
second method for choosingK finds an optimum solution for
this problem and will from now on be referred to as t
optimal-controlmethod. Optimal control is implemented i
two ways as will be discussed in Sec. II A 2.

The design of the observer is discussed in Sec. II B.
Sec. III the results of the two control methods will be illu
trated by four different implementations. Finally, in Sec.
the conclusions will be presented.

II. THEORY

This section presents the methods used to synchronize
experimental chaotic pendulum with target trajectories t
are embedded in the pendulum’s chaotic attractor. These
get trajectories are UPO’s and AO’s. Examples of AO’s a
previously measured time series of the state of the pendu
„x(t)… or the chaotic trajectory of another~but dynamically
identical! pendulum. The theory is applicable to both sta
lizing UPO’s and synchronizing two AO’s since stabilizatio
and synchronization of chaotic systems are similar phen
ena. In both cases the response system, i.e., the system
has to be controlled, has to follow a~imaginary! driving
system that moves on a desired trajectory.

Let us consider the following driving system:

ṙ ~ t !5F„r ~ t !,t…, ~1!

where the desired trajectory is represented by vectorr (t),
which is the system’s state. FunctionF is a vector-valued
function. The dynamics of the response system become

ẋ~ t !5F„x~ t !,t…1E„x~ t !2r ~ t !…, ~2!

whereE is a vector-valued function and represents the c
pling between the driving and response systems. When
systems are synchronized, hencex(t)5r (t), the coupling
between both systems becomes zero, orE50. The motion
around the target trajectoryr (t) can be represented by
linearization along this target trajectory,

d ṙ ~ t !5@DFr„r ~ t !,t…1DEr„r ~ t !…#dr ~ t !, ~3!

Here dr (t) is the deviation from the target trajectoryr (t),
and DFr and DEr are the Jacobians ofF and E, evaluated
along r (t). By substitution ofA5DFr and2K5DEr , this
equation can be written in a different, more familiar form

ė~ t !5@A„r ~ t !,t…2K „r ~ t !…#e~ t !, ~4!

wheree(t)5x(t)2r (t), i.e., the deviation from the desire
trajectory. Now we have to find the appropriate coupli
gain matrixK that will synchronize the response system w
the drive system, i.e.,ie(t)i→0 if t→`. In linear control
theory, Eq.~4! is usually considered as the closed-loop
sponse of a full state feedback controlled system. How
determine the appropriate coupling gain, or feedback ma
K is the subject of Sec. II A.
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A. Full state feedback control

The experimental driven damped pendulum can be
equately described by the following set of ODE’s@21#, and
Eq. ~1! thus becomes

ṙ ~ t !5F„r ~ t !,t…55
dv

dt
52p1v2p2 sin~u!1p3 sin~f!,

du

dt
5v,

df

dt
5vD .

~5!

Herep1 , p2 , andp3 are constants related to friction, gravit
and the driving force, respectively. The angular velocity~v!,
the angular displacement~u!, and the drive phase~f! to-
gether represent the pendulum’s full stater (t)
5@v(t)u(t)f(t)#T. The Jacobian,DF of the set of ODE’s in
Eq. ~5!, becomes

DF5S 2p1

1
0

2p2 cos„u r~ t !…
0
0

1p3 cos„f r~ t !…
0
0

D , ~6!

whereu r(t) andf r(t) denote the angular displacement a
drive phase corresponding to the target trajectoryr (t). For
the experimental chaotic pendulum, the drive phase of
response systemf(t) always equals the drive phase of th
drive systemf r(t). This means that the dynamics of re
evance are described by the following Jacobian,

DF5S 2p1

1
2p2 cos„u r~ t !…

0 D , ~7!

Now the deviatione(t) from the target trajectoryr (t) is de-
scribed by

ė~ t !5F S 2p1

1
2p2 cos„u r~ t !…

0 D2S kc,1

0
kc,2

0 D G•e~ t !,

~8!

wherekc,1 andkc,2 are the nonzero elements of the feedba
matrix K c . The second row ofK c will contain zeros, since
there is no way of directly changing the angular displa
ment. The pendulum can only be controlled by applying
extra force on it.

An intuitive approach of choosingK c in Eq. ~8! is to
make sure the poles of the system lie in the left half-plane
the system described by Eq.~8! would be time invariant,
choosing the poles in the left half-plane would yield the d
sired synchronization. Since the system is not time invaria
negative real parts of the poles do not guarantee succe
synchronization@19#. However, if the poles are placed suffi
ciently far away from the imaginary axis, synchronizatio
will occur. Hence, this intuitive approach will be used to fin
an estimate forK c . Through a rigorous linear stability analy
sis, Brown and Rulkov@19# derived a sufficient condition to
place the poles of systems with time-dependent parame
like Eq. ~8!, sufficiently far into the left half-plane. For Eq
~8!, the intuitive condition satisfies the rigorous conditio
derived by Brown and Rulkov@19#. In general, this does no
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have to be the case. However, since the rigorous conditio
only sufficient and not necessary, the intuitive approach
be used to give an initial guess forK c . Although this linear
stability analysis promises stable synchronous motion, n
and nonlinear effects, like e.g., the bubbling of attractors@20#
may prevent long-term stable synchronous motion. Two p
sible ways of choosing the location of the poles are discus
in the Sec. II A 1.

1. Pole placement

The poles of Eq.~8! are

l1,252
1

2
~p11kc,1!

6
1

2
A~p11kc,1!u24@p2 cos„u r~ t !…1kc,2#. ~9!

To keep the real parts of these poles in the left half of
complex plane, the conditionskc,1.2p1 and kc,2.
2p2 cos(ur) have to be met.

Here, two ways of meeting these conditions are cons
ered. The first one is keepingkc,1 andkc,2 constant. Hence, in
the worst case whereu r5p, kc,2.p2 andkc,1.2p1 . This
way of choosing the feedback gains will be referred to
constant gain pole placement.

The second way of making sure Re(l),0, is to allowkc,2
to vary along the trajectory, by choosing it equal tokc,2
5kc,202p2 cos(ur). Now Re(l),0, if kc,1.2p1 and kc,20
.0. It is expected that by using this type ofvariable gain
pole placementnecessary control actions are smaller th
when using constant gains. This is because the variable
is allowed to be smaller, while still meeting the conditio
for Re(l),0.

It is not straightforward to chose exact values for the fe
back gainskc,1 andkc,2 , since there are two requirements
be met. The first requirement is to make the pendulum foll
some predefined driving signalr (t), while the second re-
quirement is to do this with as little control energy as po
sible. In Sec. II A 2, two possible ways of optimizing th
choices for the values of the elements ofK c are discussed.

2. Optimal control

In this section, two implementations of optimal contr
are introduced. Before discussing how to design the cont
ler, it should be clear what is meant by optimal control. T
goal of the controller is to keep the experimental chao
pendulum on a target trajectory, using as little effort as p
sible. In practice this goal is achieved by finding the mi
mum of a cost function@17#. This cost function is then de
fined as the sum of squared deviations from the tar
trajectory plus the sum of squared control actions neede
keep the system close to the desired trajectory. In linear c
trol theory, this is achieved by model predictive control
linear quadratic control@17#.

The most straightforward way to obtain optimal control
by choosing a fixed combination ofkc,1 andkc,2 that results
in synchronization of the model equations with data from
experimental pendulumand that minimizes a cost function
of the form,
is
n
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MSE5(
i 51

N
1

Nc
S dv

sv
D

i

2

1
1

Nc
S du

su
D

i

2

1
1

Nc
S kc,1dv1kc,2du

su
D

i

2

5MSEv1MSEu1MSEu ~10!

as well, i.e.,constant gain optimal control. Here MSE is the
mean-square error per drive cycle,Nc is the number of drive
cycles, andN is the number of discrete time steps at whi
the control output is evaluated. The deviations from the t
get trajectory~du anddv! are normalized by dividing them
by the standard deviations ofu and v. The control action
(kc,1dv1kc,2du) is normalized by dividing it by the stan
dard deviation of the drive term. The standard deviations
determined from time series of the uncontrolled pendul
and are thus a measure for the size of the pendulum’s at
tor.

Instead of using a fixed combination of feedback gai
model predictive control~MPC! uses target state depende
values of the elements ofK c . This is advantageous since th
local stability of the target trajectory can now be used
keep the control actions as small as possible.

When the control of chaotic systems is approached in
drive-response way, cf. Eqs.~1! and~2!, this results in a full
state feedback algorithm through the linearization of the c
pling functionE. When using MPC, no coupling is assume
and only the dynamics transverse the target trajectory
considered. These dynamics are captured by the follow
description:

ė~ t !5DFr~r ,t !e~ t !1Bu~ t !, ~11!

where u is a scalar control input, andB5@1 0 0#T, which
determines in which of the ODE’s of Eq.~5! the control
action takes effect. When only the deviations of the angu
velocity and of the angular displacement from the target
jectory are considered, Eq.~11! becomes

ė~ t !5S 2p1

1
2p2 cos„u r~ t !…

0 D •e~ t !1S 1
0D •u~ t !. ~12!

The goal of MPC is, given an initial deviatione0 at time t0 ,
to find u(t0)•••u(t01T) that minimizes the weighted sum
of the squared future deviations from the target traject
and of the total control energy used within a certain pred
tion horizonT. For that purpose, the following cost function

V5E
t0

t01T
@e~ t !TQe~ t !1BTu~ t !RBu~ t !#dt, ~13!

is minimized by choosingu(t0)•••u(t01T). Matrices Q
andR are diagonal weighting matrices that are used to tu
the controller. These matrices are chosen in such a way,
the cost function becomes equal toNc times MSE, which
will be called the sum of squared errors~SSE!. HereNc is
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the number of drive cycles over which the cost function w
evaluated. MatrixR will then have 1/su

2 on its diagonal, and
Q5diag(1/sv

2 ,1/su
2).

When MPC is used to control the experimental pendulu
the equations have to be written in discrete time, since m
surements of the pendulum’s state are not continuou
available. Using a first-order approximation@6#, Eq. ~12! can
be written as

en115An•en1B•un , with

Aw5S 12p1•Dt
1•Dt

2p2 cos„u r~ tn!…•Dt
1 D and

B5S Dt
0 D . ~14!

This approximation is valid if the sample time (Dt) is suffi-
ciently small. The discrete version of the cost function of E
~13! can now be written as a matrix multiplication,

V~U!5XTQX1UTRU, ~15!
e
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whereX5@en11
T en12

T
¯en1N

T #T is a column vector containing
the future deviations from the target trajectory, andU
5@un un11¯un1N21#T is a column vector that contains th
current (un) and all future control actions.Q and R are
both square weighting matrices. The optimal control actio
(Uoptimal), corresponding to the minimum of the cost fun
tion of Eq. ~15!, are given by

Uoptimal52~R1B0
TQB0!21B0

TQA0e052Ke0 . ~16!

These optimal control actions are found by substitution
X5A•e1B•U into Eq. ~15! and then differentiating the re
sult toU and solving for the minimum. As can be seen fro
Eq. ~16!, the optimum sequence of control actions is giv
by a feedback control law. This means that MPC provides
optimum way of choosing the feedback matrixK . Matrix A0
gives the open loop response of the system during the
diction horizonT5N•Dt. Matrix B0 gives the influence of
the control actions on the system during this prediction
rizon. These matrices are defined as follows,
A05S An

An11An

.

.

.

.
An1N21 ...An

D , B05S B
AnB

An11AnB
An12An11AnB

.

.
An1N21 ...AnB

0
B

An11B
An12An11B

.

.

.

0
0
B

An12B
.
.
.

.

.

.
B
.
.
.

...

...

...

...

...

...

...

0
0
0
0
0
B

An1N21B

0
0
0
0
0
0
B

D . ~17!
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In practice, only the first control action of the optimum s
quence (un) is implemented; when time advances, Eq.~16!
is reevaluated to yield the new control action, etc. It is i
portant to notice that these optimal control actions~feedback
gains! can be determined off line, if the target trajectory
known.

There are now three adjustable parameters, i.e.,
weighting matricesQ andR, and the prediction horizonT ~or
N5T/Dt), to tune the controller to give optimum perfo
mance, i.e., to have a minimum value for the mean-squ
error per drive cycle. This tuning process is still a matter
trial and error.

B. Observer design

The four ways of controller implementation mentioned
the previous section, i.e., constant and variable gain p
placement, and constant gain optimal control and MPC,
rely on knowledge of the full state of the dynamical syste
However, the full state of the experimental pendulum@8,9#
cannot be measured. This means it has to be estimated b
on only one measured variable, the angular displacem
u(t). One way of estimating the angular velocity is by d
ferentiation ofu(t). However any noise and/or measureme
error present inu(t) is amplified by differentiation. Instead
-

-

e

re
f

le
ll
.

sed
nt

t

of differentiating the measured angular displacement, anob-
serverwill be used to estimate the pendulum’s full state.

As mentioned in Sec. I an observer is a model that
synchronized with the experimental system. If the observe
successfully synchronized, it’s state is an estimate for
experimental system’s full state. In this case the set
ODE’s given in Eq.~5! is used as the observer model. Th
difference between the observer’s state and the state o
experimental pendulum can be described by

ė~ t !5F S 2p2

1
2p2 cos„u~ t !…

0 D2S 0
0

kobs.1

kobs.2
D G•e~ t !,

~18!

when the observer is driven by the experimental system, s
cifically the measured values ofu(t). The values for both
observer gainskobs,1 and kobs,2 should be chosen in such
way that synchronization between the observer and the
perimental pendulum is successful, i.e., the difference
tween the measured angular displacement,u(t) and the an-
gular displacement predicted by the observer, becom
small. The constant gain pole-placement technique is use
get an initial estimate for the observer gainskobs,1andkobs,2.
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III. RESULTS

The pendulum used is a typeEM-50 chaotic pendulum
produced by the Daedalon Corporation~Salem, MA, USA!
@9#. The pendulum arm itself is connected to an axis with
optical encoder wheel and a ring magnet attached to it. F
electromagnetic drive coils act as a motor that generate
torque acting on the ring magnet. The optical encoder wh
contains a large number of slots that can optically be
tected so that the angle~u! of the pendulum can be measure
with a resolution of 4000 positions~52p rad!. An 80 486-
based computer with a digital-to-analog converter gener
a sinusoidal voltage that is transformed to a sinusoidal tor
by the pendulum’s electronics and driving mechanism. T
frequencyf 52p/vD of this sinusoidal drive voltage is 0.8
Hz. The pendulum’s angle is read 50 times per drive cy
so the sample timeDt51/50Tc , where Tc51/ f is the
length of a drive cycle in seconds.

FIG. 2. Result of the least-squares-fit procedure to estimate
unknown parameters of the pendulum model@Eq. ~19!#. The solid
line shows the measured data that was obtained by differentia
the measured angular displacement twice according to Eq.~20!. The
broken line shows the model fit with parameter valuesp150.74
60.001 s21, p2578.2660.26 rad s22, and p3566.18
60.21 rad s22. The pendulum model will be used as an observer
estimate the pendulum’s full state from measurements of only
angular displacementu(t).
n
ur
a

el
-

es
e
e
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A. Observer design

The design of the observer is split into two steps. In t
first step, a model is estimated that describes the pendulu
dynamics. In the second step, the observer feedback g
kobs,1andkobs,2are estimated.

Step 1: determination of observer model. In principle f
the observer any type of model is adequate, as long as
possible to linearize the model along the target trajecto
Black box type of models as neural networks, as well as s
of ordinary differential equations can be used to describe
functional relationship between the current state, the con
input, and the future state, the output. There are meth
available in literature@21,22# to determine differential equa
tion models from measured data. In this case the set of o
nary differential equations that describes the pendulum’s
namics are known, Eq.~5!. The unknown parameters (p1 ,
p2 , andp3) were estimated by fitting,

dv

dt
5 f ~v,u,f!52p1v2p2 sin~u!1p3 sin~f!, ~19!

to experimental data, using a method similar to that of Bak
Gollub, and Blackburn@21#. The acceleration of the pendu
lum (dv/dt) and its angular velocity~v! are estimated by
differentiating the measured angleu(t), which is sampled
using a sample timeDt, according to

v~ t !5
u~ t1Dt !2u~ t2Dt !

2Dt
,

dv~ t !

dt
5

u~ t1Dt !22u~ t !1u~ t2Dt !

Dt2 . ~20!

The drive phasef(t) is known and isvD•t. Sincedv/dt,
v, sin(u), and sin(f) are all known, parametersp1 , p2 , and
p3 can be estimated by using a linear least-squares-fit pr
dure. Due to the amplification of noise by differentiatin
measured data, it is not wise to usev(t) anddv/dt obtained
from Eq. ~20! as estimates for the full state during contro
However, for the off-line estimation of the unknown param
eters, it is wise to use Eq.~20!. Figure 2 shows the fitted an
measured angular acceleration (dv/dt), for the given pa-
rameter values. The model thus obtained exhibits chaotic
havior and has a Poincare´ map similar to the experimenta
pendulum~see Fig. 3!.

Step 2: determination of observer gains. An adequ
model for the observer is now available and the obser

he

ng

o
e

-
FIG. 3. Poincare´ maps of both the experimen
tal pendulum and the model, Eq.~5! with the es-
timated parameter values. This Poincare´ map was
constructed by recording the angular velocity~v!
and the angular displacement~u!, each time the
drive phase~f! was equal to a multiple of 2p rad.
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gains can be determined. The observer gains (kobs,1 and
kobs,2) were determined by synchronizing the model@Eq. ~5!#
with a previously measured time series containingN time
steps using the feedback scheme proposed in Eq.~18!. The
following cost function:

FIG. 4. To determine the optimal observer constants the pen
lum model@Eq. ~5!# was synchronized with a time series of prev
ously measured angular displacements~solid lines! using feedback
control according to Eq.~18!. The observer constants were adjust
using a simplex minimization routine, to minimize the sum
squared deviations from the measured data of both the angular
placement and angular velocity predicted by the model. Since
angular velocity of the pendulum could not be measured, it w
calculated from the angular displacement according to Eq.~20!. The
broken lines show the observer’s state when the optimal obse
constants (kobs,15182 s22, kobs,2546 s21) are used to synchroniz
the model with the experimental data.
V5(
i 51

N S dv

sv
D

i

R

1S du

su
D

i

2

1S kobs.1du

su
D

i

2

1S kobs.2du

sv
D

i

2

,

~21!

was minimized for optimizing the observer. The differen
between the pendulum’s and observer’s state~du and dv!
were normalized usingsv , su , andsu , the standard devia
tions ofv(t), u(t), and the drive signal, respectively. The
standard deviations are determined from the data with w
the observer is synchronized. Figure 4 shows the obse
performance using the optimum values forkobs,1 andkobs,2.
These values were obtained by using a simplex minimiza
routine.

B. Full state feedback control

To illustrate the suggested control methods, six diffe
target trajectories were used:~i! AO-1 ~aperiodic orbit 1!, an
arbitrary continuous piece of time series consisting of
drive periods,~ii ! P-1, a period-1 orbit calculated from th
model.~iii ! P-2, a period-2 orbit calculated from the mod
This calculation was done by locating a close returning p
in the Poincare´ section~Fig. 3! of the model that was used
a first estimate for a fixed point. Then this estimate w
refined by using a simplex minimization that minimized
distance on the Poincare´ section between the close returni
points. The coordinates of the fixed point thus obtained w
used to generate the complete orbit, and~iv! P-3a to P-3c
period-3 periodic orbits extracted from measured data. A
close returning points were located, but now using exp
mental data.

1. Pole placement

The experimental pendulum was first synchronized w
AO-1 using theconstant gain pole-placementtechnique dis-
cussed in Sec. II A 1. Three arbitrary combinations ofkc,1
andkc,2 were chosen that satisfy the worst case condition
keep Re(l),0. Table I shows the synchronization resu

u-
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is
in such

sults in
h is the
control
is best
TABLE I. Results of theconstant gain pole-placementmethod. Here the experimental pendulum
synchronized with different target trajectories using constant feed back gains. These gains are chosen
a way that the poles of the controlled system that is linearized along the target trajectory@Eq. ~8!#, will always
have negative real parts. If these real parts are chosen to be sufficiently negative, this always re
successful synchronization. The controller performance is expressed by the MSE per drive cycle, whic
sum of normalized squared deviations from the target trajectory plus the sum of normalized squared
actions, averaged over one drive cycle of the experimental pendulum. Here target trajectory P-3a
stabilized using this specific combination of feedback constants.

Target
trajectory Feedback gains MSE

Individual contributions to the MSE
@Eq. ~10!#

kc,1 kc,2 MSEv MSEu MSEu

AO-1 48.58 78.26 2.433 0.021 0.342 2.070
AO-1 54.49 117.39 1.710 0.051 0.196 1.495
AO-1 69.31 234.78 1.347 0.018 0.080 1.249
P-1 54.49 117.39 1.050 0.195 1.399 8.456
P-2 54.49 117.39 5.932 0.111 0.846 4.974
P-3a 54.49 117.39 0.417 0.003 0.014 0.401
P-3b 54.49 117.39 4.360 0.063 0.536 3.760
P-3c 54.49 117.39 1.382 0.017 0.126 1.238
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TABLE II. Results of thevariable gain pole-placementmethod. In contrast to the constant gain po
placement method~Table I!, kc,2 is allowed to vary along the target trajectory according tokc,25kc,20

2p2 cos„u r(t)…. Here the values forkc,1 andkc,20 are chosen in such a way that the poles of the contro
system, which is linearized along the target trajectories@Eq. ~8!#, have negative real parts. If these real pa
are sufficiently negative, this will result in synchronization. Clearly for the first two choices of the feed
gains, synchronization fails as is indicated by the large values for the MSE per drive cycle.

Target
trajectory Feedback gains MSE

Individual contributions to the MSE
@Eq. ~10!#

kc,1 kc,20 MSEv MSEu MSEu

AO-1 0.75 0.141 102.697 41.379 43.036 18.280
AO-1 7.50 4.254 44.411 11.215 19.441 13.721
AO-1 37.50 91.44 1.236 0.015 0.171 1.050
AO-1 75.0 358.63 1.443 0.016 0.037 1.390
P-1 37.50 91.44 8.398 0.125 1.306 6.967
P-2 37.50 91.44 4.956 0.064 0.623 4.269
P-3a 37.50 91.44 0.211 0.002 0.074 0.196
P-3b 37.50 91.44 4.602 0.054 0.589 3.959
P-3c 37.50 91.44 0.373 0.003 0.024 0.346
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where MSE, Eq.~10!, and its three components are shown
an indication of controller performance. One of the com
nations of feedback gains was used to synchronize the
perimental pendulum with the other target trajectories. Us
this specific choice of gains (kc,1554.49 andkc,25117.39),
P-3a is best stabilized (MSE50.417).

The variable gain pole-placementtechnique was used t
synchronize the pendulum with AO-1~see Table II!. The
combination ofkc,1 andkc,20 that gave the smallest value fo
MSE ~51.236! was used to synchronize the pendulum w
the other target trajectories. Again P-3a is best stabiliz
MSE is almost twice as low as when usingconstant gain
pole placement~see Fig. 5!.
s
-
x-
g

d,

2. Optimal control

When inspecting the results presented in Tables I and I
is not obvious which values to choose for the feedback ga
in order to obtain a minimal MSE. When a certain combin
tion of feedback gains results in a small MSE for one tar
trajectory, it does not necessarily result in a small MSE
another target trajectory. When using optimal controlle
this is dealt with since optimal controller design is based
minimizing the sum of squared errors~SSE!; that is the prod-
uct of Nc and MSE.

Synchronization is more successful, i.e., smaller val
for MSE, for all target trajectories~Table III!, when using
constant gain optimal control, compared to the results tha
ories,
s

ut is

is due
ntrol

equals
FIG. 5. Results of theconstant gain optimal-controltechnique. The figures show the normalized deviations from the target traject
and the size of the control actions relative to the drive amplitude (p3) of the pendulum@Eq. ~5!#. The broken lines indicate level
corresponding to610% of the standard deviation (su or sv) of the uncontrolled, chaotic dynamics of both the angular velocity~v! and the
angular displacement~u!. ~a! Although the experimental pendulum follows target trajectory P-1 well, a considerable control inp
needed. Most of the time control actions exceeding 10% of the drive amplitude are needed. The broken lines indicate the610% boundary.
The MSE@Eq. ~10!#, which is indicative for the controller performance, has a value of 7.093. The largest contribution to this value
to the control actions, 5.582~578.7%!. ~b! The experimental pendulum synchronizes very well with target trajectory P3-b. The co
actions needed stay well within the610% boundary. The MSE in this case is 0.156 and the contribution of the control actions to MSE
0.075~548.1%!.
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TABLE III. Results of theconstant gain optimal-controlmethod. The optimal feedback gains we
obtained by synchronizing the model Eq.~5! with the different target trajectories with simultaneous minim
zation of the MSE per drive cycle using a simplex minimization routine~MSE optimization!. The optimal
feedback gains thus obtained were then used to synchronize the experimental pendulum with the d
target trajectories~MSE measurement!. Clearly target trajectories P-3a and P-3b are best stabilized using
very little control effort.

Target
trajectory Feedback gains MSE

Individual contributions to
the measured MSE@Eq.

~10!#

kc,1 kc,2 Optimization Measurement MSEv MSEu MSEu

AO-1 36.28 332.97 13.131 0.940 0.025 0.018 0.897
P-1 19.95 30.19 0.010 7.093 0.172 1.339 5.582
P-2 5.91 80.68 0.017 1.742 0.151 0.125 1.466
P-3a 7.28 41.56 2.363 0.156 0.014 0.024 0.118
P-3b 3.26 34.17 1.703 0.156 0.040 0.041 0.075
P-3c 10.41 101.94 4.543 0.183 0.012 0.010 0.161
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were obtained using the pole-placement method. Anothe
markable result is that the MSE’s of P-1 and P-2 are
largest in the experiment, and the smallest in the simula
that was done to estimate the gains. This result is best
plained by considering the origin of the P-1 and P-2 orb
Both orbits were calculated using the model, whereas
other orbits are all determined from experimental data.

Although constant gain optimal controlhas a better per
formance~smaller MSE’s! than both methods based on po
placement, model predictive control results in even be
performance. This is expected since with MPC the ga
vary along the target trajectory, taking advantage of the lo
stability of the target trajectory.

When using MPC the weighting matricesQ andR as well
as the length of the prediction horizonT have to be chosen
In this paperQ andR are chosen in such a way that the co
function given in Eq.~15! becomes the same asNc•MSE
when the weights (Wv , Wu , andWu) on the individual con-
tributions to MSE (MSEv , MSEu , and MSEu) are set to
unity. HereNc is the number of drive cycles over which E
~15! is evaluated and MSE is defined by Eq.~10!.
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Choosing the optimal tuning parameters~T, Wv , Wu , and
Wu) is still a matter of trial and error. However, this can b
automated by simulation of the controlled nonlinear proc
and tuning of the weight parameters until the minimum
the MSE is reached. Here this automation process is
implemented, rather just a number of possible combinati
are screened for the AO-1 as target trajectory. Then a
reducing the number of possible combinations, the other
get trajectories were stabilized as well.

The AO-1 was chosen as the target trajectory for the p
pose of screening a number of possible prediction hori
lengths. The number of time steps in the prediction horiz
~N! was chosen to be 5, 10, 25, and 50 time steps, whic
equivalent to 0.1, 0.2, 0.5, and 1 times the driving period
the pendulum (Tc). Three fixed combinations for the weigh
were used, i.e.,@WvWuWu#5@1 1 1# that is equivalent to
minimizing MSE, and@WvWuWu#5@1 5 5#, or @1 10 10#,
which puts a larger penalty on differences between the m
sured and target angle and the magnitude of the control
tions.

The twelve resulting MSE’s are shown in Table IV. As
r the
culated
,
of the

iction
ization
sed.
E does
TABLE IV. Results of the model predictive control method. The MSE’s per drive cycle are shown fo
synchronization of the experimental pendulum with AO-1. The feedback gains that were used are cal
by minimizing the SSE over a certain prediction horizon. This SSE@Eq. ~15!# consists of three contributions
i.e., the squared normalized deviations of the angular velocity, the squared normalized deviations
angular displacement, and the squared normalized control actions. A weight of@1 1 1# means that each
contribution to the SSE is weighted equally in the calculation of the optimal feedback gains. A pred
horizon of 5 time steps is too small for successful synchronization. The most successful synchron
~smallest MSE’s! is obtained when a prediction horizon of 25 time steps, or half a drive cycle, is u
Putting more weight on the contributions of the control actions and the angular displacement to the SS
not result in improved controller performance.

Prediction horizon
~time steps! Weights on the individual contributions to SSE

@1 1 1# @1 5 5# @1 10 10#
5 51.966 92.187 76.086

10 2.168 4.372 14.813
25 0.418 0.436 0.428
50 0.874 0.861 0.753
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TABLE V. Results using MPC. In this table the results are shown of using MPC to synchroniz
experimental pendulum with the different target trajectories. The length of the prediction horizon was
as 10 time steps. The most striking result of using MPC is that the experimental pendulum is synchr
well with P-1 and P-2, opposed to the results presented in Tables I, II, and III. Again increasing the w
on the contribution of the control actions to the optimization criterion~SSE!, does not result in smalle
control effort needed to stabilize the pendulum; see also Table IV.

Target
trajectory Weights on the individual contributions to SSE

@1 1 1# @1 5 5# @1 10 10#
MSE MSEu MSE MSEu MSE MSEu

AO-1 2.168 0.681 4.372 0.927 14.813 2.504
P-1 1.512 0.346 1.568 0.361 2.620 0.516
P-2 1.190 0.272 1.290 0.203 1.210 0.181
P-3a 0.204 0.074 1.089 0.252 1.657 0.390
P-3b 1.549 0.267 0.290 0.039 0.302 0.045
P-3c 0.237 0.079 0.399 0.100 0.734 0.164
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clear from Table IV the optimal choice is taking the numb
of time steps in the prediction horizon equal toN525 and
the weights@WvWuWu#5@1 1 1#. A prediction horizon of
N55 is too small to synchronize the experimental pendul
with the target trajectory. However, whenN510, the pendu-
lum synchronizes with AO-1.

A prediction horizon ofN510 is chosen when synchro
nizing the experimental pendulum with the other target t
jectories. This choice was made, sinceN is large enough to
yield successful synchronization, but is still small enough
avoid large computation times. The weights on the individ
contributions of the MSE (Wv , Wu , andWu), were chosen
the same as when synchronizing AO-1. The resulting MS
as well as the contribution of the control actions to MSE
reported in Table V.

Increasing the penalties on the MSEu an MSEu does not
result in smaller MSE’s for all target trajectories but P-3
Furthermore, the effect on the contribution of the cont
actions to the MSE of an increased penalty on MSEu , is not
clear. In most cases MSEu grows with increasing penalty
however, not when P-2 and P-3b are the target trajecto
This result indicates that by changing the penalty~or weight!
on the different contributions to MSE, controller perfo
mance can be enhanced in some cases.

The constant gain optimal controlmethod has the bes
performance, i.e., smallest MSE’s for all target trajector
but P-1 and P-2. In these cases model predictive con
clearly has the better performance. However, closer insp
tion of the results in Table IV suggest that MPC will outpe
form the constant gain optimal control method, when
prediction horizon is chosen to beN525. The MSE, when
r
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AO-1 is the target trajectory, is more than halved when us
MPC andN525 (MSE50.418, Table IV! compared to the
constant gain case (MSE50.940, Table III!.

IV. CONCLUSIONS

In this paper a general procedure has been outlined
control chaotic systems using linear control methods. In c
trast with other chaos control procedures@13–15,19#, the
procedure outlined in this paper automatically results in
choice for the feedback gains that gives optimum perf
mance, i.e., minimum fluctuations around the desired tra
tory, using minimum control actions. The procedure cons
of four steps. In the first step, a model of the system is bu
In the second step target trajectories are defined, which
be AO’s corresponding to previously observed trajectori
or UPO’s. In the third step, the optimal feedback consta
along the target trajectories are determined using MPC.
nally, in the fourth step, the controller is implemented in t
experimental setup. This approach shows that linear con
methods, specifically model predictive control, are well a
plicable to control nonlinear chaotic dynamical systems. T
approach is illustrated by the successful control of an exp
mental chaotic system, i.e., a driven damped pendulum.
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